Search results

Search for "electron plasma" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • Drude model, where ωp = 2.183 × 1015 s−1 is the free-electron plasma frequency and γ = 1.41 × 1014 rad·s−1 is the relaxation rate. A possible approach to calculate the incoherent contribution is the so-called small-roughness approach, previously developed by Ishimaru et al. [42]. Following this approach
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • -field enhancement than on the mass or absorption cross-section of the nanostructure. These findings can be used to advance the nanoparticle-based nanoscale manipulation of matter. Keywords: electron plasma; finite element method; optical breakdown; plasmon coupling; plasmonic nanoparticles
  • electromagnetic fields with gold nanoparticles and their environment, the absorption of the pulse energy by the nanoparticles and their environment and the resulting heating, and the generation of a free-electron plasma and its effect on the optical properties of the environment. The generation of a free-electron
  • free-electron density generation [26][34]. This model does not have a full two-way coupling between the Mie simulations and free-electron plasma rate equations and omits the photo-thermal emission of hot electrons off the nanoparticle surface [30]. In addition the Mie theory is not applicable to
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • span from 0.1 ps to about 1 ns. Characteristic phenomena like electron plasma formation, ultrafast melting and ablation, along with their characteristic time scales are observed in the region surrounding the particle. The use of a time resolved imaging technique allows us recording simultaneously the
  • included in Figure 4 the evolution of the surface reflectivity measured at the center of the irradiated region, i.e., at the position of maximum fluence. The image at 200 fs delay shows the formation of a bright region in the laser irradiated zone due to the formation of a dense free-electron plasma. The
  • evidences the formation of a dense electron plasma. The next image, at 300 fs, shows that both the intensity and size of the bright region at the edge of the particle are reduced. For further delays (0.5–2 ps), the images show a very similar appearance, with a small ellipse (see the insets with a 2× zoom of
PDF
Album
Full Research Paper
Published 04 Sep 2013
Other Beilstein-Institut Open Science Activities